system: Linux mars.sprixweb.com 3.10.0-1160.119.1.el7.x86_64 #1 SMP Tue Jun 4 14:43:51 UTC 2024 x86_64
Direktori : /usr/include/rpm/ |
|
Current File : //usr/include/rpm/rpmpgp.h |
#ifndef H_RPMPGP
#define H_RPMPGP
/** \ingroup rpmpgp
* \file rpmio/rpmpgp.h
*
* OpenPGP constants and structures from RFC-2440.
*
* Text from RFC-2440 in comments is
* Copyright (C) The Internet Society (1998). All Rights Reserved.
*/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <rpm/rpmtypes.h>
#include <rpm/rpmstring.h>
#ifdef __cplusplus
extern "C" {
#endif
/** \ingroup rpmpgp
*/
typedef struct DIGEST_CTX_s * DIGEST_CTX;
typedef struct rpmDigestBundle_s * rpmDigestBundle;
/** \ingroup rpmpgp
*/
typedef struct pgpDig_s * pgpDig;
/** \ingroup rpmpgp
*/
typedef struct pgpDigParams_s * pgpDigParams;
typedef uint8_t pgpKeyID_t[8];
typedef uint8_t pgpTime_t[4];
/** \ingroup rpmpgp
* 4.3. Packet Tags
*
* The packet tag denotes what type of packet the body holds. Note that
* old format headers can only have tags less than 16, whereas new
* format headers can have tags as great as 63.
*/
typedef enum pgpTag_e {
PGPTAG_RESERVED = 0, /*!< Reserved/Invalid */
PGPTAG_PUBLIC_SESSION_KEY = 1, /*!< Public-Key Encrypted Session Key */
PGPTAG_SIGNATURE = 2, /*!< Signature */
PGPTAG_SYMMETRIC_SESSION_KEY= 3, /*!< Symmetric-Key Encrypted Session Key*/
PGPTAG_ONEPASS_SIGNATURE = 4, /*!< One-Pass Signature */
PGPTAG_SECRET_KEY = 5, /*!< Secret Key */
PGPTAG_PUBLIC_KEY = 6, /*!< Public Key */
PGPTAG_SECRET_SUBKEY = 7, /*!< Secret Subkey */
PGPTAG_COMPRESSED_DATA = 8, /*!< Compressed Data */
PGPTAG_SYMMETRIC_DATA = 9, /*!< Symmetrically Encrypted Data */
PGPTAG_MARKER = 10, /*!< Marker */
PGPTAG_LITERAL_DATA = 11, /*!< Literal Data */
PGPTAG_TRUST = 12, /*!< Trust */
PGPTAG_USER_ID = 13, /*!< User ID */
PGPTAG_PUBLIC_SUBKEY = 14, /*!< Public Subkey */
PGPTAG_COMMENT_OLD = 16, /*!< Comment (from OpenPGP draft) */
PGPTAG_PHOTOID = 17, /*!< PGP's photo ID */
PGPTAG_ENCRYPTED_MDC = 18, /*!< Integrity protected encrypted data */
PGPTAG_MDC = 19, /*!< Manipulaion detection code packet */
PGPTAG_PRIVATE_60 = 60, /*!< Private or Experimental Values */
PGPTAG_COMMENT = 61, /*!< Comment */
PGPTAG_PRIVATE_62 = 62, /*!< Private or Experimental Values */
PGPTAG_CONTROL = 63 /*!< Control (GPG) */
} pgpTag;
/** \ingroup rpmpgp
* 5.1. Public-Key Encrypted Session Key Packets (Tag 1)
*
* A Public-Key Encrypted Session Key packet holds the session key used
* to encrypt a message. Zero or more Encrypted Session Key packets
* (either Public-Key or Symmetric-Key) may precede a Symmetrically
* Encrypted Data Packet, which holds an encrypted message. The message
* is encrypted with the session key, and the session key is itself
* encrypted and stored in the Encrypted Session Key packet(s). The
* Symmetrically Encrypted Data Packet is preceded by one Public-Key
* Encrypted Session Key packet for each OpenPGP key to which the
* message is encrypted. The recipient of the message finds a session
* key that is encrypted to their public key, decrypts the session key,
* and then uses the session key to decrypt the message.
*
* The body of this packet consists of:
* - A one-octet number giving the version number of the packet type.
* The currently defined value for packet version is 3. An
* implementation should accept, but not generate a version of 2,
* which is equivalent to V3 in all other respects.
* - An eight-octet number that gives the key ID of the public key
* that the session key is encrypted to.
* - A one-octet number giving the public key algorithm used.
* - A string of octets that is the encrypted session key. This string
* takes up the remainder of the packet, and its contents are
* dependent on the public key algorithm used.
*
* Algorithm Specific Fields for RSA encryption
* - multiprecision integer (MPI) of RSA encrypted value m**e mod n.
*
* Algorithm Specific Fields for Elgamal encryption:
* - MPI of Elgamal (Diffie-Hellman) value g**k mod p.
* - MPI of Elgamal (Diffie-Hellman) value m * y**k mod p.
*/
typedef struct pgpPktPubkey_s {
uint8_t version; /*!< version number (generate 3, accept 2). */
pgpKeyID_t keyid; /*!< key ID of the public key for session key. */
uint8_t algo; /*!< public key algorithm used. */
} pgpPktPubkey;
/** \ingroup rpmpgp
* 5.2.1. Signature Types
*
* There are a number of possible meanings for a signature, which are
* specified in a signature type octet in any given signature.
*/
typedef enum pgpSigType_e {
PGPSIGTYPE_BINARY = 0x00, /*!< Binary document */
PGPSIGTYPE_TEXT = 0x01, /*!< Canonical text document */
PGPSIGTYPE_STANDALONE = 0x02, /*!< Standalone */
PGPSIGTYPE_GENERIC_CERT = 0x10,
/*!< Generic certification of a User ID & Public Key */
PGPSIGTYPE_PERSONA_CERT = 0x11,
/*!< Persona certification of a User ID & Public Key */
PGPSIGTYPE_CASUAL_CERT = 0x12,
/*!< Casual certification of a User ID & Public Key */
PGPSIGTYPE_POSITIVE_CERT = 0x13,
/*!< Positive certification of a User ID & Public Key */
PGPSIGTYPE_SUBKEY_BINDING = 0x18, /*!< Subkey Binding */
PGPSIGTYPE_SIGNED_KEY = 0x1F, /*!< Signature directly on a key */
PGPSIGTYPE_KEY_REVOKE = 0x20, /*!< Key revocation */
PGPSIGTYPE_SUBKEY_REVOKE = 0x28, /*!< Subkey revocation */
PGPSIGTYPE_CERT_REVOKE = 0x30, /*!< Certification revocation */
PGPSIGTYPE_TIMESTAMP = 0x40 /*!< Timestamp */
} pgpSigType;
/** \ingroup rpmpgp
* 9.1. Public Key Algorithms
*
\verbatim
ID Algorithm
-- ---------
1 - RSA (Encrypt or Sign)
2 - RSA Encrypt-Only
3 - RSA Sign-Only
16 - Elgamal (Encrypt-Only), see [ELGAMAL]
17 - DSA (Digital Signature Standard)
18 - Reserved for Elliptic Curve
19 - Reserved for ECDSA
20 - Elgamal (Encrypt or Sign)
21 - Reserved for Diffie-Hellman (X9.42,
as defined for IETF-S/MIME)
100 to 110 - Private/Experimental algorithm.
\endverbatim
*
* Implementations MUST implement DSA for signatures, and Elgamal for
* encryption. Implementations SHOULD implement RSA keys.
* Implementations MAY implement any other algorithm.
*/
typedef enum pgpPubkeyAlgo_e {
PGPPUBKEYALGO_RSA = 1, /*!< RSA */
PGPPUBKEYALGO_RSA_ENCRYPT = 2, /*!< RSA(Encrypt-Only) */
PGPPUBKEYALGO_RSA_SIGN = 3, /*!< RSA(Sign-Only) */
PGPPUBKEYALGO_ELGAMAL_ENCRYPT = 16, /*!< Elgamal(Encrypt-Only) */
PGPPUBKEYALGO_DSA = 17, /*!< DSA */
PGPPUBKEYALGO_EC = 18, /*!< Elliptic Curve */
PGPPUBKEYALGO_ECDSA = 19, /*!< ECDSA */
PGPPUBKEYALGO_ELGAMAL = 20, /*!< Elgamal */
PGPPUBKEYALGO_DH = 21 /*!< Diffie-Hellman (X9.42) */
} pgpPubkeyAlgo;
/** \ingroup rpmpgp
* 9.2. Symmetric Key Algorithms
*
\verbatim
ID Algorithm
-- ---------
0 - Plaintext or unencrypted data
1 - IDEA [IDEA]
2 - Triple-DES (DES-EDE, as per spec -
168 bit key derived from 192)
3 - CAST5 (128 bit key, as per RFC 2144)
4 - Blowfish (128 bit key, 16 rounds) [BLOWFISH]
5 - SAFER-SK128 (13 rounds) [SAFER]
6 - Reserved for DES/SK
7 - Reserved for AES with 128-bit key
8 - Reserved for AES with 192-bit key
9 - Reserved for AES with 256-bit key
100 to 110 - Private/Experimental algorithm.
\endverbatim
*
* Implementations MUST implement Triple-DES. Implementations SHOULD
* implement IDEA and CAST5. Implementations MAY implement any other
* algorithm.
*/
typedef enum pgpSymkeyAlgo_e {
PGPSYMKEYALGO_PLAINTEXT = 0, /*!< Plaintext */
PGPSYMKEYALGO_IDEA = 1, /*!< IDEA */
PGPSYMKEYALGO_TRIPLE_DES = 2, /*!< 3DES */
PGPSYMKEYALGO_CAST5 = 3, /*!< CAST5 */
PGPSYMKEYALGO_BLOWFISH = 4, /*!< BLOWFISH */
PGPSYMKEYALGO_SAFER = 5, /*!< SAFER */
PGPSYMKEYALGO_DES_SK = 6, /*!< DES/SK */
PGPSYMKEYALGO_AES_128 = 7, /*!< AES(128-bit key) */
PGPSYMKEYALGO_AES_192 = 8, /*!< AES(192-bit key) */
PGPSYMKEYALGO_AES_256 = 9, /*!< AES(256-bit key) */
PGPSYMKEYALGO_TWOFISH = 10, /*!< TWOFISH(256-bit key) */
PGPSYMKEYALGO_NOENCRYPT = 110 /*!< no encryption */
} pgpSymkeyAlgo;
/** \ingroup rpmpgp
* 9.3. Compression Algorithms
*
\verbatim
ID Algorithm
-- ---------
0 - Uncompressed
1 - ZIP (RFC 1951)
2 - ZLIB (RFC 1950)
100 to 110 - Private/Experimental algorithm.
\endverbatim
*
* Implementations MUST implement uncompressed data. Implementations
* SHOULD implement ZIP. Implementations MAY implement ZLIB.
*/
typedef enum pgpCompressAlgo_e {
PGPCOMPRESSALGO_NONE = 0, /*!< Uncompressed */
PGPCOMPRESSALGO_ZIP = 1, /*!< ZIP */
PGPCOMPRESSALGO_ZLIB = 2, /*!< ZLIB */
PGPCOMPRESSALGO_BZIP2 = 3 /*!< BZIP2 */
} pgpCompressAlgo;
/** \ingroup rpmpgp
* 9.4. Hash Algorithms
*
\verbatim
ID Algorithm Text Name
-- --------- ---- ----
1 - MD5 "MD5"
2 - SHA-1 "SHA1"
3 - RIPE-MD/160 "RIPEMD160"
4 - Reserved for double-width SHA (experimental)
5 - MD2 "MD2"
6 - Reserved for TIGER/192 "TIGER192"
7 - Reserved for HAVAL (5 pass, 160-bit)
"HAVAL-5-160"
100 to 110 - Private/Experimental algorithm.
\endverbatim
*
* Implementations MUST implement SHA-1. Implementations SHOULD
* implement MD5.
* @todo Add SHA256.
*/
typedef enum pgpHashAlgo_e {
PGPHASHALGO_MD5 = 1, /*!< MD5 */
PGPHASHALGO_SHA1 = 2, /*!< SHA1 */
PGPHASHALGO_RIPEMD160 = 3, /*!< RIPEMD160 */
PGPHASHALGO_MD2 = 5, /*!< MD2 */
PGPHASHALGO_TIGER192 = 6, /*!< TIGER192 */
PGPHASHALGO_HAVAL_5_160 = 7, /*!< HAVAL-5-160 */
PGPHASHALGO_SHA256 = 8, /*!< SHA256 */
PGPHASHALGO_SHA384 = 9, /*!< SHA384 */
PGPHASHALGO_SHA512 = 10, /*!< SHA512 */
PGPHASHALGO_SHA224 = 11, /*!< SHA224 */
} pgpHashAlgo;
/** \ingroup rpmpgp
* 5.2.2. Version 3 Signature Packet Format
*
* The body of a version 3 Signature Packet contains:
* - One-octet version number (3).
* - One-octet length of following hashed material. MUST be 5.
* - One-octet signature type.
* - Four-octet creation time.
* - Eight-octet key ID of signer.
* - One-octet public key algorithm.
* - One-octet hash algorithm.
* - Two-octet field holding left 16 bits of signed hash value.
* - One or more multi-precision integers comprising the signature.
*
* Algorithm Specific Fields for RSA signatures:
* - multiprecision integer (MPI) of RSA signature value m**d.
*
* Algorithm Specific Fields for DSA signatures:
* - MPI of DSA value r.
* - MPI of DSA value s.
*/
typedef struct pgpPktSigV3_s {
uint8_t version; /*!< version number (3). */
uint8_t hashlen; /*!< length of following hashed material. MUST be 5. */
uint8_t sigtype; /*!< signature type. */
pgpTime_t time; /*!< 4 byte creation time. */
pgpKeyID_t signid; /*!< key ID of signer. */
uint8_t pubkey_algo; /*!< public key algorithm. */
uint8_t hash_algo; /*!< hash algorithm. */
uint8_t signhash16[2]; /*!< left 16 bits of signed hash value. */
} * pgpPktSigV3;
/** \ingroup rpmpgp
* 5.2.3. Version 4 Signature Packet Format
*
* The body of a version 4 Signature Packet contains:
* - One-octet version number (4).
* - One-octet signature type.
* - One-octet public key algorithm.
* - One-octet hash algorithm.
* - Two-octet scalar octet count for following hashed subpacket
* data. Note that this is the length in octets of all of the hashed
* subpackets; a pointer incremented by this number will skip over
* the hashed subpackets.
* - Hashed subpacket data. (zero or more subpackets)
* - Two-octet scalar octet count for following unhashed subpacket
* data. Note that this is the length in octets of all of the
* unhashed subpackets; a pointer incremented by this number will
* skip over the unhashed subpackets.
* - Unhashed subpacket data. (zero or more subpackets)
* - Two-octet field holding left 16 bits of signed hash value.
* - One or more multi-precision integers comprising the signature.
*/
typedef struct pgpPktSigV4_s {
uint8_t version; /*!< version number (4). */
uint8_t sigtype; /*!< signature type. */
uint8_t pubkey_algo; /*!< public key algorithm. */
uint8_t hash_algo; /*!< hash algorithm. */
uint8_t hashlen[2]; /*!< length of following hashed material. */
} * pgpPktSigV4;
/** \ingroup rpmpgp
* 5.2.3.1. Signature Subpacket Specification
*
* The subpacket fields consist of zero or more signature subpackets.
* Each set of subpackets is preceded by a two-octet scalar count of the
* length of the set of subpackets.
*
* Each subpacket consists of a subpacket header and a body. The header
* consists of:
* - the subpacket length (1, 2, or 5 octets)
* - the subpacket type (1 octet)
* and is followed by the subpacket specific data.
*
* The length includes the type octet but not this length. Its format is
* similar to the "new" format packet header lengths, but cannot have
* partial body lengths. That is:
\verbatim
if the 1st octet < 192, then
lengthOfLength = 1
subpacketLen = 1st_octet
if the 1st octet >= 192 and < 255, then
lengthOfLength = 2
subpacketLen = ((1st_octet - 192) << 8) + (2nd_octet) + 192
if the 1st octet = 255, then
lengthOfLength = 5
subpacket length = [four-octet scalar starting at 2nd_octet]
\endverbatim
*
* The value of the subpacket type octet may be:
*
\verbatim
2 = signature creation time
3 = signature expiration time
4 = exportable certification
5 = trust signature
6 = regular expression
7 = revocable
9 = key expiration time
10 = placeholder for backward compatibility
11 = preferred symmetric algorithms
12 = revocation key
16 = issuer key ID
20 = notation data
21 = preferred hash algorithms
22 = preferred compression algorithms
23 = key server preferences
24 = preferred key server
25 = primary user id
26 = policy URL
27 = key flags
28 = signer's user id
29 = reason for revocation
100 to 110 = internal or user-defined
\endverbatim
*
* An implementation SHOULD ignore any subpacket of a type that it does
* not recognize.
*
* Bit 7 of the subpacket type is the "critical" bit. If set, it
* denotes that the subpacket is one that is critical for the evaluator
* of the signature to recognize. If a subpacket is encountered that is
* marked critical but is unknown to the evaluating software, the
* evaluator SHOULD consider the signature to be in error.
*/
typedef enum pgpSubType_e {
PGPSUBTYPE_NONE = 0, /*!< none */
PGPSUBTYPE_SIG_CREATE_TIME = 2, /*!< signature creation time */
PGPSUBTYPE_SIG_EXPIRE_TIME = 3, /*!< signature expiration time */
PGPSUBTYPE_EXPORTABLE_CERT = 4, /*!< exportable certification */
PGPSUBTYPE_TRUST_SIG = 5, /*!< trust signature */
PGPSUBTYPE_REGEX = 6, /*!< regular expression */
PGPSUBTYPE_REVOCABLE = 7, /*!< revocable */
PGPSUBTYPE_KEY_EXPIRE_TIME = 9, /*!< key expiration time */
PGPSUBTYPE_ARR = 10, /*!< additional recipient request */
PGPSUBTYPE_PREFER_SYMKEY = 11, /*!< preferred symmetric algorithms */
PGPSUBTYPE_REVOKE_KEY = 12, /*!< revocation key */
PGPSUBTYPE_ISSUER_KEYID = 16, /*!< issuer key ID */
PGPSUBTYPE_NOTATION = 20, /*!< notation data */
PGPSUBTYPE_PREFER_HASH = 21, /*!< preferred hash algorithms */
PGPSUBTYPE_PREFER_COMPRESS = 22, /*!< preferred compression algorithms */
PGPSUBTYPE_KEYSERVER_PREFERS= 23, /*!< key server preferences */
PGPSUBTYPE_PREFER_KEYSERVER = 24, /*!< preferred key server */
PGPSUBTYPE_PRIMARY_USERID = 25, /*!< primary user id */
PGPSUBTYPE_POLICY_URL = 26, /*!< policy URL */
PGPSUBTYPE_KEY_FLAGS = 27, /*!< key flags */
PGPSUBTYPE_SIGNER_USERID = 28, /*!< signer's user id */
PGPSUBTYPE_REVOKE_REASON = 29, /*!< reason for revocation */
PGPSUBTYPE_FEATURES = 30, /*!< feature flags (gpg) */
PGPSUBTYPE_EMBEDDED_SIG = 32, /*!< embedded signature (gpg) */
PGPSUBTYPE_INTERNAL_100 = 100, /*!< internal or user-defined */
PGPSUBTYPE_INTERNAL_101 = 101, /*!< internal or user-defined */
PGPSUBTYPE_INTERNAL_102 = 102, /*!< internal or user-defined */
PGPSUBTYPE_INTERNAL_103 = 103, /*!< internal or user-defined */
PGPSUBTYPE_INTERNAL_104 = 104, /*!< internal or user-defined */
PGPSUBTYPE_INTERNAL_105 = 105, /*!< internal or user-defined */
PGPSUBTYPE_INTERNAL_106 = 106, /*!< internal or user-defined */
PGPSUBTYPE_INTERNAL_107 = 107, /*!< internal or user-defined */
PGPSUBTYPE_INTERNAL_108 = 108, /*!< internal or user-defined */
PGPSUBTYPE_INTERNAL_109 = 109, /*!< internal or user-defined */
PGPSUBTYPE_INTERNAL_110 = 110, /*!< internal or user-defined */
PGPSUBTYPE_CRITICAL = 128 /*!< critical subpacket marker */
} pgpSubType;
/** \ingroup rpmpgp
* 5.2. Signature Packet (Tag 2)
*
* A signature packet describes a binding between some public key and
* some data. The most common signatures are a signature of a file or a
* block of text, and a signature that is a certification of a user ID.
*
* Two versions of signature packets are defined. Version 3 provides
* basic signature information, while version 4 provides an expandable
* format with subpackets that can specify more information about the
* signature. PGP 2.6.x only accepts version 3 signatures.
*
* Implementations MUST accept V3 signatures. Implementations SHOULD
* generate V4 signatures. Implementations MAY generate a V3 signature
* that can be verified by PGP 2.6.x.
*
* Note that if an implementation is creating an encrypted and signed
* message that is encrypted to a V3 key, it is reasonable to create a
* V3 signature.
*/
typedef union pgpPktSig_u {
struct pgpPktSigV3_s v3;
struct pgpPktSigV4_s v4;
} * pgpPktSig;
/**
* 5.3. Symmetric-Key Encrypted Session-Key Packets (Tag 3)
*
* The Symmetric-Key Encrypted Session Key packet holds the symmetric-
* key encryption of a session key used to encrypt a message. Zero or
* more Encrypted Session Key packets and/or Symmetric-Key Encrypted
* Session Key packets may precede a Symmetrically Encrypted Data Packet
* that holds an encrypted message. The message is encrypted with a
* session key, and the session key is itself encrypted and stored in
* the Encrypted Session Key packet or the Symmetric-Key Encrypted
* Session Key packet.
*
* If the Symmetrically Encrypted Data Packet is preceded by one or more
* Symmetric-Key Encrypted Session Key packets, each specifies a
* passphrase that may be used to decrypt the message. This allows a
* message to be encrypted to a number of public keys, and also to one
* or more pass phrases. This packet type is new, and is not generated
* by PGP 2.x or PGP 5.0.
*
* The body of this packet consists of:
* - A one-octet version number. The only currently defined version
* is 4.
* - A one-octet number describing the symmetric algorithm used.
* - A string-to-key (S2K) specifier, length as defined above.
* - Optionally, the encrypted session key itself, which is decrypted
* with the string-to-key object.
*
*/
typedef struct pgpPktSymkey_s {
uint8_t version; /*!< version number (4). */
uint8_t symkey_algo;
uint8_t s2k[1];
} pgpPktSymkey;
/** \ingroup rpmpgp
* 5.4. One-Pass Signature Packets (Tag 4)
*
* The One-Pass Signature packet precedes the signed data and contains
* enough information to allow the receiver to begin calculating any
* hashes needed to verify the signature. It allows the Signature
* Packet to be placed at the end of the message, so that the signer can
* compute the entire signed message in one pass.
*
* A One-Pass Signature does not interoperate with PGP 2.6.x or earlier.
*
* The body of this packet consists of:
* - A one-octet version number. The current version is 3.
* - A one-octet signature type. Signature types are described in
* section 5.2.1.
* - A one-octet number describing the hash algorithm used.
* - A one-octet number describing the public key algorithm used.
* - An eight-octet number holding the key ID of the signing key.
* - A one-octet number holding a flag showing whether the signature
* is nested. A zero value indicates that the next packet is
* another One-Pass Signature packet that describes another
* signature to be applied to the same message data.
*
* Note that if a message contains more than one one-pass signature,
* then the signature packets bracket the message; that is, the first
* signature packet after the message corresponds to the last one-pass
* packet and the final signature packet corresponds to the first one-
* pass packet.
*/
typedef struct pgpPktOnepass_s {
uint8_t version; /*!< version number (3). */
uint8_t sigtype; /*!< signature type. */
uint8_t hash_algo; /*!< hash algorithm. */
uint8_t pubkey_algo; /*!< public key algorithm. */
pgpKeyID_t signid; /*!< key ID of signer. */
uint8_t nested;
} * pgpPktOnepass;
/** \ingroup rpmpgp
* 5.5.1. Key Packet Variants
*
* 5.5.1.1. Public Key Packet (Tag 6)
*
* A Public Key packet starts a series of packets that forms an OpenPGP
* key (sometimes called an OpenPGP certificate).
*
* 5.5.1.2. Public Subkey Packet (Tag 14)
*
* A Public Subkey packet (tag 14) has exactly the same format as a
* Public Key packet, but denotes a subkey. One or more subkeys may be
* associated with a top-level key. By convention, the top-level key
* provides signature services, and the subkeys provide encryption
* services.
*
* Note: in PGP 2.6.x, tag 14 was intended to indicate a comment packet.
* This tag was selected for reuse because no previous version of PGP
* ever emitted comment packets but they did properly ignore them.
* Public Subkey packets are ignored by PGP 2.6.x and do not cause it to
* fail, providing a limited degree of backward compatibility.
*
* 5.5.1.3. Secret Key Packet (Tag 5)
*
* A Secret Key packet contains all the information that is found in a
* Public Key packet, including the public key material, but also
* includes the secret key material after all the public key fields.
*
* 5.5.1.4. Secret Subkey Packet (Tag 7)
*
* A Secret Subkey packet (tag 7) is the subkey analog of the Secret Key
* packet, and has exactly the same format.
*
* 5.5.2. Public Key Packet Formats
*
* There are two versions of key-material packets. Version 3 packets
* were first generated by PGP 2.6. Version 2 packets are identical in
* format to Version 3 packets, but are generated by PGP 2.5 or before.
* V2 packets are deprecated and they MUST NOT be generated. PGP 5.0
* introduced version 4 packets, with new fields and semantics. PGP
* 2.6.x will not accept key-material packets with versions greater than
* 3.
*
* OpenPGP implementations SHOULD create keys with version 4 format. An
* implementation MAY generate a V3 key to ensure interoperability with
* old software; note, however, that V4 keys correct some security
* deficiencies in V3 keys. These deficiencies are described below. An
* implementation MUST NOT create a V3 key with a public key algorithm
* other than RSA.
*
* A version 3 public key or public subkey packet contains:
* - A one-octet version number (3).
* - A four-octet number denoting the time that the key was created.
* - A two-octet number denoting the time in days that this key is
* valid. If this number is zero, then it does not expire.
* - A one-octet number denoting the public key algorithm of this key
* - A series of multi-precision integers comprising the key
* material:
* - a multiprecision integer (MPI) of RSA public modulus n;
* - an MPI of RSA public encryption exponent e.
*
* V3 keys SHOULD only be used for backward compatibility because of
* three weaknesses in them. First, it is relatively easy to construct a
* V3 key that has the same key ID as any other key because the key ID
* is simply the low 64 bits of the public modulus. Secondly, because
* the fingerprint of a V3 key hashes the key material, but not its
* length, which increases the opportunity for fingerprint collisions.
* Third, there are minor weaknesses in the MD5 hash algorithm that make
* developers prefer other algorithms. See below for a fuller discussion
* of key IDs and fingerprints.
*
*/
typedef struct pgpPktKeyV3_s {
uint8_t version; /*!< version number (3). */
pgpTime_t time; /*!< time that the key was created. */
uint8_t valid[2]; /*!< time in days that this key is valid. */
uint8_t pubkey_algo; /*!< public key algorithm. */
} * pgpPktKeyV3;
/** \ingroup rpmpgp
* The version 4 format is similar to the version 3 format except for
* the absence of a validity period. This has been moved to the
* signature packet. In addition, fingerprints of version 4 keys are
* calculated differently from version 3 keys, as described in section
* "Enhanced Key Formats."
*
* A version 4 packet contains:
* - A one-octet version number (4).
* - A four-octet number denoting the time that the key was created.
* - A one-octet number denoting the public key algorithm of this key
* - A series of multi-precision integers comprising the key
* material. This algorithm-specific portion is:
*
* Algorithm Specific Fields for RSA public keys:
* - multiprecision integer (MPI) of RSA public modulus n;
* - MPI of RSA public encryption exponent e.
*
* Algorithm Specific Fields for DSA public keys:
* - MPI of DSA prime p;
* - MPI of DSA group order q (q is a prime divisor of p-1);
* - MPI of DSA group generator g;
* - MPI of DSA public key value y (= g**x where x is secret).
*
* Algorithm Specific Fields for Elgamal public keys:
* - MPI of Elgamal prime p;
* - MPI of Elgamal group generator g;
* - MPI of Elgamal public key value y (= g**x where x is
* secret).
*
*/
typedef struct pgpPktKeyV4_s {
uint8_t version; /*!< version number (4). */
pgpTime_t time; /*!< time that the key was created. */
uint8_t pubkey_algo; /*!< public key algorithm. */
} * pgpPktKeyV4;
/** \ingroup rpmpgp
* 5.5.3. Secret Key Packet Formats
*
* The Secret Key and Secret Subkey packets contain all the data of the
* Public Key and Public Subkey packets, with additional algorithm-
* specific secret key data appended, in encrypted form.
*
* The packet contains:
* - A Public Key or Public Subkey packet, as described above
* - One octet indicating string-to-key usage conventions. 0
* indicates that the secret key data is not encrypted. 255
* indicates that a string-to-key specifier is being given. Any
* other value is a symmetric-key encryption algorithm specifier.
* - [Optional] If string-to-key usage octet was 255, a one-octet
* symmetric encryption algorithm.
* - [Optional] If string-to-key usage octet was 255, a string-to-key
* specifier. The length of the string-to-key specifier is implied
* by its type, as described above.
* - [Optional] If secret data is encrypted, eight-octet Initial
* Vector (IV).
* - Encrypted multi-precision integers comprising the secret key
* data. These algorithm-specific fields are as described below.
* - Two-octet checksum of the plaintext of the algorithm-specific
* portion (sum of all octets, mod 65536).
*
* Algorithm Specific Fields for RSA secret keys:
* - multiprecision integer (MPI) of RSA secret exponent d.
* - MPI of RSA secret prime value p.
* - MPI of RSA secret prime value q (p < q).
* - MPI of u, the multiplicative inverse of p, mod q.
*
* Algorithm Specific Fields for DSA secret keys:
* - MPI of DSA secret exponent x.
*
* Algorithm Specific Fields for Elgamal secret keys:
* - MPI of Elgamal secret exponent x.
*
* Secret MPI values can be encrypted using a passphrase. If a string-
* to-key specifier is given, that describes the algorithm for
* converting the passphrase to a key, else a simple MD5 hash of the
* passphrase is used. Implementations SHOULD use a string-to-key
* specifier; the simple hash is for backward compatibility. The cipher
* for encrypting the MPIs is specified in the secret key packet.
*
* Encryption/decryption of the secret data is done in CFB mode using
* the key created from the passphrase and the Initial Vector from the
* packet. A different mode is used with V3 keys (which are only RSA)
* than with other key formats. With V3 keys, the MPI bit count prefix
* (i.e., the first two octets) is not encrypted. Only the MPI non-
* prefix data is encrypted. Furthermore, the CFB state is
* resynchronized at the beginning of each new MPI value, so that the
* CFB block boundary is aligned with the start of the MPI data.
*
* With V4 keys, a simpler method is used. All secret MPI values are
* encrypted in CFB mode, including the MPI bitcount prefix.
*
* The 16-bit checksum that follows the algorithm-specific portion is
* the algebraic sum, mod 65536, of the plaintext of all the algorithm-
* specific octets (including MPI prefix and data). With V3 keys, the
* checksum is stored in the clear. With V4 keys, the checksum is
* encrypted like the algorithm-specific data. This value is used to
* check that the passphrase was correct.
*
*/
typedef union pgpPktKey_u {
struct pgpPktKeyV3_s v3;
struct pgpPktKeyV4_s v4;
} pgpPktKey;
/* \ingroup rpmpgp
* 5.6. Compressed Data Packet (Tag 8)
*
* The Compressed Data packet contains compressed data. Typically, this
* packet is found as the contents of an encrypted packet, or following
* a Signature or One-Pass Signature packet, and contains literal data
* packets.
*
* The body of this packet consists of:
* - One octet that gives the algorithm used to compress the packet.
* - The remainder of the packet is compressed data.
*
* A Compressed Data Packet's body contains an block that compresses
* some set of packets. See section "Packet Composition" for details on
* how messages are formed.
*
* ZIP-compressed packets are compressed with raw RFC 1951 DEFLATE
* blocks. Note that PGP V2.6 uses 13 bits of compression. If an
* implementation uses more bits of compression, PGP V2.6 cannot
* decompress it.
*
* ZLIB-compressed packets are compressed with RFC 1950 ZLIB-style
* blocks.
*/
typedef struct pgpPktCdata_s {
uint8_t compressalgo;
uint8_t data[1];
} pgpPktCdata;
/* \ingroup rpmpgp
* 5.7. Symmetrically Encrypted Data Packet (Tag 9)
*
* The Symmetrically Encrypted Data packet contains data encrypted with
* a symmetric-key algorithm. When it has been decrypted, it will
* typically contain other packets (often literal data packets or
* compressed data packets).
*
* The body of this packet consists of:
* - Encrypted data, the output of the selected symmetric-key cipher
* operating in PGP's variant of Cipher Feedback (CFB) mode.
*
* The symmetric cipher used may be specified in an Public-Key or
* Symmetric-Key Encrypted Session Key packet that precedes the
* Symmetrically Encrypted Data Packet. In that case, the cipher
* algorithm octet is prefixed to the session key before it is
* encrypted. If no packets of these types precede the encrypted data,
* the IDEA algorithm is used with the session key calculated as the MD5
* hash of the passphrase.
*
* The data is encrypted in CFB mode, with a CFB shift size equal to the
* cipher's block size. The Initial Vector (IV) is specified as all
* zeros. Instead of using an IV, OpenPGP prefixes a 10-octet string to
* the data before it is encrypted. The first eight octets are random,
* and the 9th and 10th octets are copies of the 7th and 8th octets,
* respectively. After encrypting the first 10 octets, the CFB state is
* resynchronized if the cipher block size is 8 octets or less. The
* last 8 octets of ciphertext are passed through the cipher and the
* block boundary is reset.
*
* The repetition of 16 bits in the 80 bits of random data prefixed to
* the message allows the receiver to immediately check whether the
* session key is incorrect.
*/
typedef struct pgpPktEdata_s {
uint8_t data[1];
} pgpPktEdata;
/* \ingroup rpmpgp
* 5.8. Marker Packet (Obsolete Literal Packet) (Tag 10)
*
* An experimental version of PGP used this packet as the Literal
* packet, but no released version of PGP generated Literal packets with
* this tag. With PGP 5.x, this packet has been re-assigned and is
* reserved for use as the Marker packet.
*
* The body of this packet consists of:
* - The three octets 0x50, 0x47, 0x50 (which spell "PGP" in UTF-8).
*
* Such a packet MUST be ignored when received. It may be placed at the
* beginning of a message that uses features not available in PGP 2.6.x
* in order to cause that version to report that newer software is
* necessary to process the message.
*/
/* \ingroup rpmpgp
* 5.9. Literal Data Packet (Tag 11)
*
* A Literal Data packet contains the body of a message; data that is
* not to be further interpreted.
*
* The body of this packet consists of:
* - A one-octet field that describes how the data is formatted.
*
* If it is a 'b' (0x62), then the literal packet contains binary data.
* If it is a 't' (0x74), then it contains text data, and thus may need
* line ends converted to local form, or other text-mode changes. RFC
* 1991 also defined a value of 'l' as a 'local' mode for machine-local
* conversions. This use is now deprecated.
* - File name as a string (one-octet length, followed by file name),
* if the encrypted data should be saved as a file.
*
* If the special name "_CONSOLE" is used, the message is considered to
* be "for your eyes only". This advises that the message data is
* unusually sensitive, and the receiving program should process it more
* carefully, perhaps avoiding storing the received data to disk, for
* example.
* - A four-octet number that indicates the modification date of the
* file, or the creation time of the packet, or a zero that
* indicates the present time.
* - The remainder of the packet is literal data.
*
* Text data is stored with <CR><LF> text endings (i.e. network-normal
* line endings). These should be converted to native line endings by
* the receiving software.
*/
typedef struct pgpPktLdata_s {
uint8_t format;
uint8_t filenamelen;
uint8_t filename[1];
} pgpPktLdata;
/* \ingroup rpmpgp
* 5.10. Trust Packet (Tag 12)
*
* The Trust packet is used only within keyrings and is not normally
* exported. Trust packets contain data that record the user's
* specifications of which key holders are trustworthy introducers,
* along with other information that implementing software uses for
* trust information.
*
* Trust packets SHOULD NOT be emitted to output streams that are
* transferred to other users, and they SHOULD be ignored on any input
* other than local keyring files.
*/
typedef struct pgpPktTrust_s {
uint8_t flag;
} pgpPktTrust;
/* \ingroup rpmpgp
* 5.11. User ID Packet (Tag 13)
*
* A User ID packet consists of data that is intended to represent the
* name and email address of the key holder. By convention, it includes
* an RFC 822 mail name, but there are no restrictions on its content.
* The packet length in the header specifies the length of the user id.
* If it is text, it is encoded in UTF-8.
*
*/
typedef struct pgpPktUid_s {
uint8_t userid[1];
} pgpPktUid;
/** \ingroup rpmpgp
*/
union pgpPktPre_u {
pgpPktPubkey pubkey; /*!< 5.1. Public-Key Encrypted Session Key */
pgpPktSig sig; /*!< 5.2. Signature */
pgpPktSymkey symkey; /*!< 5.3. Symmetric-Key Encrypted Session-Key */
pgpPktOnepass onepass; /*!< 5.4. One-Pass Signature */
pgpPktKey key; /*!< 5.5. Key Material */
pgpPktCdata cdata; /*!< 5.6. Compressed Data */
pgpPktEdata edata; /*!< 5.7. Symmetrically Encrypted Data */
/*!< 5.8. Marker (obsolete) */
pgpPktLdata ldata; /*!< 5.9. Literal Data */
pgpPktTrust tdata; /*!< 5.10. Trust */
pgpPktUid uid; /*!< 5.11. User ID */
};
/** \ingroup rpmpgp
*/
typedef enum pgpArmor_e {
PGPARMOR_ERR_CRC_CHECK = -7,
PGPARMOR_ERR_BODY_DECODE = -6,
PGPARMOR_ERR_CRC_DECODE = -5,
PGPARMOR_ERR_NO_END_PGP = -4,
PGPARMOR_ERR_UNKNOWN_PREAMBLE_TAG = -3,
PGPARMOR_ERR_UNKNOWN_ARMOR_TYPE = -2,
PGPARMOR_ERR_NO_BEGIN_PGP = -1,
#define PGPARMOR_ERROR PGPARMOR_ERR_NO_BEGIN_PGP
PGPARMOR_NONE = 0,
PGPARMOR_MESSAGE = 1, /*!< MESSAGE */
PGPARMOR_PUBKEY = 2, /*!< PUBLIC KEY BLOCK */
PGPARMOR_SIGNATURE = 3, /*!< SIGNATURE */
PGPARMOR_SIGNED_MESSAGE = 4, /*!< SIGNED MESSAGE */
PGPARMOR_FILE = 5, /*!< ARMORED FILE */
PGPARMOR_PRIVKEY = 6, /*!< PRIVATE KEY BLOCK */
PGPARMOR_SECKEY = 7 /*!< SECRET KEY BLOCK */
} pgpArmor;
/** \ingroup rpmpgp
*/
typedef enum pgpArmorKey_e {
PGPARMORKEY_VERSION = 1, /*!< Version: */
PGPARMORKEY_COMMENT = 2, /*!< Comment: */
PGPARMORKEY_MESSAGEID = 3, /*!< MessageID: */
PGPARMORKEY_HASH = 4, /*!< Hash: */
PGPARMORKEY_CHARSET = 5 /*!< Charset: */
} pgpArmorKey;
typedef enum pgpValType_e {
PGPVAL_TAG = 1,
PGPVAL_ARMORBLOCK = 2,
PGPVAL_ARMORKEY = 3,
PGPVAL_SIGTYPE = 4,
PGPVAL_SUBTYPE = 5,
PGPVAL_PUBKEYALGO = 6,
PGPVAL_SYMKEYALGO = 7,
PGPVAL_COMPRESSALGO = 8,
PGPVAL_HASHALGO = 9,
PGPVAL_SERVERPREFS = 10,
} pgpValType;
/** \ingroup rpmpgp
* Bit(s) to control digest operation.
*/
enum rpmDigestFlags_e {
RPMDIGEST_NONE = 0
};
typedef rpmFlags rpmDigestFlags;
/** \ingroup rpmpgp
* Return string representation of am OpenPGP value.
* @param type type of value
* @param val byte value to lookup
* @return string value of byte
*/
const char * pgpValString(pgpValType type, uint8_t val);
/** \ingroup rpmpgp
* Return (native-endian) integer from big-endian representation.
* @param s pointer to big-endian integer
* @param nbytes no. of bytes
* @return native-endian integer
*/
static inline
unsigned int pgpGrab(const uint8_t *s, size_t nbytes)
{
size_t i = 0;
size_t nb = (nbytes <= sizeof(i) ? nbytes : sizeof(i));
while (nb--)
i = (i << 8) | *s++;
return i;
}
/** \ingroup rpmpgp
* Return hex formatted representation of bytes.
* @param p bytes
* @param plen no. of bytes
* @return hex formatted string (malloc'ed)
*/
char * pgpHexStr(const uint8_t *p, size_t plen);
/** \ingroup rpmpgp
* Calculate OpenPGP public key fingerprint.
* @todo V3 non-RSA public keys not implemented.
* @param pkt OpenPGP packet (i.e. PGPTAG_PUBLIC_KEY)
* @param pktlen OpenPGP packet length (no. of bytes)
* @retval keyid public key fingerprint
* @return 0 on success, else -1
*/
int pgpPubkeyFingerprint(const uint8_t * pkt, size_t pktlen,
pgpKeyID_t keyid);
/** \ingroup rpmpgp
* Extract OpenPGP public key fingerprint from base64 encoded packet.
* @todo V3 non-RSA public keys not implemented.
* @param b64pkt base64 encoded openpgp packet
* @retval keyid public key fingerprint
* @return 8 (no. of bytes) on success, < 0 on error
*/
int pgpExtractPubkeyFingerprint(const char * b64pkt, pgpKeyID_t keyid);
/** \ingroup rpmpgp
* Parse a OpenPGP packet(s).
* @param pkts OpenPGP packet(s)
* @param pktlen OpenPGP packet(s) length (no. of bytes)
* @param pkttype Expected packet type (signature/key) or 0 for any
* @retval ret signature/pubkey packet parameters on success (alloced)
* @return -1 on error, 0 on success
*/
int pgpPrtParams(const uint8_t *pkts, size_t pktlen, unsigned int pkttype,
pgpDigParams * ret);
/** \ingroup rpmpgp
* Print/parse a OpenPGP packet(s).
* @param pkts OpenPGP packet(s)
* @param pktlen OpenPGP packet(s) length (no. of bytes)
* @retval dig parsed output of signature/pubkey packet parameters
* @param printing should packets be printed?
* @return -1 on error, 0 on success
*/
int pgpPrtPkts(const uint8_t *pkts, size_t pktlen, pgpDig dig, int printing);
/** \ingroup rpmpgp
* Parse armored OpenPGP packets from a file.
* @param fn file name
* @retval pkt dearmored OpenPGP packet(s) (malloced)
* @retval pktlen dearmored OpenPGP packet(s) length in bytes
* @return type of armor found
*/
pgpArmor pgpReadPkts(const char * fn, uint8_t ** pkt, size_t * pktlen);
/** \ingroup rpmpgp
* Parse armored OpenPGP packets from memory.
* @param armor armored OpenPGP packet string
* @retval pkt dearmored OpenPGP packet(s) (malloced)
* @retval pktlen dearmored OpenPGP packet(s) length in bytes
* @return type of armor found
*/
pgpArmor pgpParsePkts(const char *armor, uint8_t ** pkt, size_t * pktlen);
/** \ingroup rpmpgp
* Wrap a OpenPGP packets in ascii armor for transport.
* @param atype type of armor
* @param s binary pkt data
* @param ns binary pkt data length
* @return formatted string
*/
char * pgpArmorWrap(int atype, const unsigned char * s, size_t ns);
/** \ingroup rpmpgp
* Create a container for parsed OpenPGP packet(s).
* @return container
*/
pgpDig pgpNewDig(void);
/** \ingroup rpmpgp
* Release (malloc'd) data from container.
* @param dig container
*/
void pgpCleanDig(pgpDig dig);
/** \ingroup rpmpgp
* Destroy a container for parsed OpenPGP packet(s).
* @param dig container
* @return NULL always
*/
pgpDig pgpFreeDig(pgpDig dig);
/** \ingroup rpmpgp
* Retrieve parameters for parsed OpenPGP packet(s).
* @param dig container
* @param pkttype type of params to retrieve (signature / pubkey)
* @return pointer to OpenPGP parameters, NULL on error/not found
*/
pgpDigParams pgpDigGetParams(pgpDig dig, unsigned int pkttype);
/** \ingroup rpmpgp
* Compare OpenPGP packet parameters
* param p1 1st parameter container
* param p2 2nd parameter container
* return 1 if the parameters differ, 0 otherwise
*/
int pgpDigParamsCmp(pgpDigParams p1, pgpDigParams p2);
/** \ingroup rpmpgp
* Retrieve OpenPGP algorithm parameters
* param digp parameter container
* param algotype PGPVAL_HASHALGO / PGPVAL_PUBKEYALGO
* return algorithm value, 0 on error
*/
unsigned int pgpDigParamsAlgo(pgpDigParams digp, unsigned int algotype);
/** \ingroup rpmpgp
* Destroy parsed OpenPGP packet parameter(s).
* @param digp parameter container
* @return NULL always
*/
pgpDigParams pgpDigParamsFree(pgpDigParams digp);
/** \ingroup rpmpgp
* Verify a PGP signature.
* @param key public key
* @param sig signature
* @param hashctx digest context
* @return RPMRC_OK on success
*/
rpmRC pgpVerifySignature(pgpDigParams key, pgpDigParams sig, DIGEST_CTX hashctx);
/** \ingroup rpmpgp
* Verify a PGP signature.
* @deprecated use pgpVerifySignature() instead
*
* @param dig container
* @param hashctx digest context
* @return RPMRC_OK on success
*/
rpmRC pgpVerifySig(pgpDig dig, DIGEST_CTX hashctx);
/** \ingroup rpmpgp
* Return a string identification of a PGP signature/pubkey.
* @param digp signature/pubkey container
* @return string describing the item and parameters
*/
char *pgpIdentItem(pgpDigParams digp);
/** \ingroup rpmpgp
* Perform cryptography initialization.
* It must be called before any cryptography can be used within rpm.
* It's not normally necessary to call it directly as it's called in
* general rpm initialization routines.
* @return 0 on success, -1 on failure
*/
int rpmInitCrypto(void);
/** \ingroup rpmpgp
* Shutdown cryptography
*/
int rpmFreeCrypto(void);
/** \ingroup rpmpgp
* Duplicate a digest context.
* @param octx existing digest context
* @return duplicated digest context
*/
DIGEST_CTX rpmDigestDup(DIGEST_CTX octx);
/** \ingroup rpmpgp
* Obtain digest length in bytes.
* @param hashalgo type of digest
* @return digest length, zero on invalid algorithm
*/
size_t rpmDigestLength(int hashalgo);
/** \ingroup rpmpgp
* Initialize digest.
* Set bit count to 0 and buffer to mysterious initialization constants.
* @param hashalgo type of digest
* @param flags bit(s) to control digest operation
* @return digest context
*/
DIGEST_CTX rpmDigestInit(int hashalgo, rpmDigestFlags flags);
/** \ingroup rpmpgp
* Update context with next plain text buffer.
* @param ctx digest context
* @param data next data buffer
* @param len no. bytes of data
* @return 0 on success
*/
int rpmDigestUpdate(DIGEST_CTX ctx, const void * data, size_t len);
/** \ingroup rpmpgp
* Return digest and destroy context.
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*
* @param ctx digest context
* @retval datap address of returned digest
* @retval lenp address of digest length
* @param asAscii return digest as ascii string?
* @return 0 on success
*/
int rpmDigestFinal(DIGEST_CTX ctx,
void ** datap,
size_t * lenp, int asAscii);
/** \ingroup rpmpgp
* Create a new digest bundle.
* @return New digest bundle
*/
rpmDigestBundle rpmDigestBundleNew(void);
/** \ingroup rpmpgp
* Free a digest bundle and all contained digest contexts.
* @param bundle digest bundle
* @return NULL always
*/
rpmDigestBundle rpmDigestBundleFree(rpmDigestBundle bundle);
/** \ingroup rpmpgp
* Add a new type of digest to a bundle.
* @param bundle digest bundle
* @param algo type of digest
* @param flags bit(s) to control digest operation
* @return 0 on success
*/
int rpmDigestBundleAdd(rpmDigestBundle bundle, int algo,
rpmDigestFlags flags);
/** \ingroup rpmpgp
* Update contexts within bundle with next plain text buffer.
* @param bundle digest bundle
* @param data next data buffer
* @param len no. bytes of data
* @return 0 on success
*/
int rpmDigestBundleUpdate(rpmDigestBundle bundle, const void *data, size_t len);
/** \ingroup rpmpgp
* Return digest from a bundle and destroy context, see rpmDigestFinal().
*
* @param bundle digest bundle
* @param algo type of digest to return
* @retval datap address of returned digest
* @retval lenp address of digest length
* @param asAscii return digest as ascii string?
* @return 0 on success
*/
int rpmDigestBundleFinal(rpmDigestBundle bundle,
int algo, void ** datap, size_t * lenp, int asAscii);
/** \ingroup rpmpgp
* Duplicate a digest context from a bundle.
* @param bundle digest bundle
* @param algo type of digest to dup
* @return duplicated digest context
*/
DIGEST_CTX rpmDigestBundleDupCtx(rpmDigestBundle bundle, int algo);
#ifdef __cplusplus
}
#endif
#endif /* H_RPMPGP */